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SUMMARY

Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic

equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned
Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation

scheme provides an efficient and relatively simple approach for solving two-dimensional spectral

equations. Numerical examples and comparisons with other methods are given.

INTRODUCTION

For limited-area problems with general (non-periodic) boundary conditions, Chebyshev spectral

methods give exponential convergence for smooth solutions. However, except in some very simple

cases (e.g., one-dimensional constant-coefficient problems), Chebyshev approximations usually lead

to full linear systems which cannot be solved efficiently by direct methods, and iterative methods

must be used. Unfortunately, designing efficient iterative methods for discrete spectral equations

has proven difficult, especially for problems with non-constant coefficients (ref. 1). Perhaps the

most promising technique to date for solving spectral discretizations of elliptic problems is the

spectral multigrid method (ref. 2, 3). However, the best relaxation schemes known today are

complicated to apply. In this paper we introduce two simpler relaxation schemes and investigate

their performance.

As prototype problems we consider one- and two-dimensional elliptic equations with Dirichlet

boundary conditions on simple geometric domains. In one dimension we consider

-u"(x) = f(x), I_1< 1, (1)
u(+l) = a, u(-1) = b.

The two-dimensional prototype problem is

-Au(x,y) = f(x,y),

u(x, y) = g(_,y),
Ixl,lyl < 1, (2)
I_1= 1, lyl- 1.

We discretize these problems by Chebyshev collocation. For example, for the two-dimensional

problem (2), the solution u(x, y) is approximated by a set of discrete values 12j,k on the Chebyshev
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grid {(_j, _3k) = (cos(jrr/N_),cos(kr/Ny))10 _<j _< N_,0 < k < Ny}, with the requirement that

problem (2) be satisfied on this grid, i.e.,

- uj,k + j,k J l < j <Yx,O<k <Ny
j = O,j = Nx,k = O,k = Ny

(3)

-(**) fi(uy)
where u j, k and j,k are values of the second-order derivatives of the Chebyshev approximation

Nx Nu ^
Era=0 En=0 umnTm(x)Tn(y) to u(x,y) on the Chebyshev grid. For simplicity, we will assume here

that N_ = N u = N; however, the codes described in this paper do not require this.

The discrete problem (3) can be expressed in form of a linear system

AO = P (4)

Unfortunately, the matrix A, formulated by Chebyshev collocation approximations, is full and

non-symmetric. For two-dimensional problems, direct methods (like Gaussian elimination) would

require O(N 6) operations for factorization and O(N 4) for the subsequent solution, which is far too

much work to be practical. Thus, iterative methods must be used.

THE POINTWISE PRECONDITIONED RICHARDSON RELAXATION SCHEME

The most efficient method available today for solving (4) and its generalizations to other

elliptic problems is the spectral multigrid method of Zang et al. (ref. 2, 3), which employs finite-

difference preconditioned Richardson iteration as the relaxation scheme in a multigrid context.

Precon_t, i oned Richardson relaxation for (4) takes the f6rm : :: :

V +---- V + wH(F- AV),

where V is the current approximation to O, w is a relaxation parameter, and/-I is the

preconditioner. The criteria for choosing a preconditioner H are:

(5)

• H should give fast multigrid convergence,

• H should be easy and cheap to generate or apply.

The finite-difference preconditioning of Zang et al. (ref. 2, 3) gives fast convergence, but applying it

requires solving (or nearly solving) a finite-difference discretization on the nonuniform Chebyshev

grid. This procedure is complicated and expensive. Are there alternatives which are simpler

and still effective? Achi Brandt (personal communication, 1983) has suggested that pointwise

preconditioning based on the (variable) Chebyshev mesh spacing might work well. In this section,

we investigate the performance of this simple preconditioner when applied to the problem (4).
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The One-Dimensional Case

Formulation

As an analogue of the Gauss-Seidel relaxation for a finite-difference method, the pointwise

preconditioning for the Chebyshev discretization takes the form

h 2.

v i e--- vj + w-_-rj,

where hj = (Ycj-1 -- Xj+l)/2 is the effective grid size at the point _,j, rj is the the residual

R = F - AV at _j, and w is a relaxation parameter to be chosen to accelerate the convergence.

Note that (6) is equivalent to choosing the preconditioning matrix H in (5) as a diagonal matrix

(6)

H-diag(1, 2'--h2 "'"_h_v-12 ,1). (7)

Analysis

The evolution of the error E -- V - 0 in the Richardson relaxation (5) is described by

Ee--(I-wHA)E.

Therefore, the convergence factor for (5) on a single grid is

(8)

GSG = p(I - wHA),

where p denotes the spectral radius. Likewise, the multigrid smoothing factor for (5), when used as

a smoother in a multigrid method (e.g., ref. 4), is

p=p(G(I-wHA)), (9)

where G represents the perfect coarse-grid correction, i.e., set all low modes of the error to zero.

For the simple preconditioning (7), our numerical computations show that the eigenvalues of the

matrix HA are all positive real numbers. The maximum eigenvalue is )%aax _ 5.0, the middle is

Amid _ 1.5, and the minimum is _mln _ O(N-2) • The formulas of Zang et. al. (ref. 2, 3) then give a

good approximation to the optimal w and p, namely,

2 )_max -- Amid
w _ _ 0.325, p _ _ 0.6. (10)

]_max + ]_mid ]_max + )_mid

Indeed, computing the smoothing factor directly from (9) using w = 0.325, we find that _ _< 0.6 for

all N _< 512.

To take into account the effects of grid transfers (omitted in the smoothing analysis above),

we use the following two-grid analysis. The evolution of the error E in one two-grid V(nl, n2)-

cycle (where nl and n2 specify the number of relaxation sweeps before and after the coarse-grid
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correction, respectively)is describedby the matrix

T = ([-wHAf)'_2(I - PA-[1RA)(I-wHAf) hI. (11)

Here, R represents the fine-to-coarse grid transfer (we use injection), P represents the coarse-to-

fine grid transfer (we use Chebyshev interpolation), and Af and Ac represent the discrete operator

matrix in (4) on the fine and coarse grids, respectively. Note that (11) assumes that the coarse-grid

problem is solved exactly.

We computed the two-grid convergence factor eTG = P (T) for N <: 512 using different

values of 0J, and the numerical results show that w = 0.325 again gives the optimal convergence

factor (or very close to it). Using that constant value, we find that the smoothing factor per sweep

_s -- (OrTG) 1/(nl+n2) satisfieS

0.5 < _ _<0.6

for all N < 512. A similar analysis for the one-dimensional Helmholtz problem

u(x) - u"(x) = (12)

shows that with various choices of A and boundary conditions (Dirichlet, Neumann and mixed), an

appropriate pointwise preconditioner also yields the smoothing factor per sweep #8 <_ 0.6.

We have developed FORTRAN-77 routines to implement the Chebyshev multigrid method

using the pointwise preconditioner as described above. The code has been used to solve the

problem (12) with various choices of u(x), A, and boundary conditions. The observed convergence

factor per sweep #8 is smaller than 0.60 for all cases tested, in agreement with the analysis

presented above.

The Two-Dimensional Case

Formulation

We note that Gauss-Seidel relaxation for the second-order centered finite difference

approximation to (2) can be written as

h 2 :_

uj,k e-- uj,_ + _rj,k,

where rj,k is the finite-difference residual. A natural analogue for the Chebyshev collocation

discretization (3) is

( i )+ 2/h + 2/h  j,k,

- (xx)
where hj and ha are the grid sizes at the point (_j, Yk), _j,k := fj,k - [-(gj k + 9(YY)_I is thej,k ]J
residual of Chebyshev discretization, and w is a relaxation parameter to be c_osen to accelerate

the convergence. Clearly, the iteration (13) is a special case of the Richardson iteration (5), with
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2 -1
a diagonal preconditioner H with diagonal entries (H)jk,jk = (2/h2 + 2/hk) • This preconditioner

is easy and fast to apply. Does it gives a fast convergence? Unfortunately, the following analysis

shows that the answer is no.

Analysis

Computational results indicate that the eigenvalues of the matrix HA are all positive real

numbers. Again, good approximations to the optimal w and _ can be obtained by

2 Amax - Aqua (14)

where )_max is the maximum eigenvalue and _qua is the quarter eigenvalue (ref. 1). More precise

values of the optimal w and p, can be obtained by actually computing the spectral radius

p(G(I - wHA)) for different choices of w and comparing the results. For N <_ 32, the eigenvalues

Amax and Aqua, w and p computed by (14) and the optimal w and p are listed in Table I. Since p is

large and increases with N, these results suggest that the pointwise preconditioner (13) will not be

a good multigrid smoother.

Table I also lists the two-grid smoothing factors per sweep #s = (P (T)) 1/(nl+n2) computed from

the matrices in (11) for N < 32 using w = 0.36. These results again show that the pointwise

preconditioning (13) does not give fast convergence.

We have implemented the pointwise preconditioning (13) in a multigrid solver written in

Fortran 77. Computational results from a number of test cases confirm the above analysis: we

conclude that the pointwise preconditioning does not give fast convergence.

Table I. Multigrid Analysis of Two-Dimensional Pointwise Preconditioning

Eigenvalues of HA By (14) By computation

N Amax Aqua W p Wopt P ]As

4 3.00 1.83 0.41 0.24 0.35 0.28 0.51

8 4.10 1.26 0.37 0.53 0.35 0.52 0.68

16 4.57 0.95 0.36 0.66 0.36 0.75 0.80

32 4.76 0.78 0.36 0.72 0.36 0.82 0.88
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THE LINE RELAXATION METHOD

The poor performance of pointwise preconditioning in two dimensions can be understood in

terms of the anisotropy introduced by the nonuniform Chebyshev collocation grid. Since the mesh

spacing varies with x and y, at any given point (x, y) the coupling in the discrete operator in (3)

may be st r0nger in x or in y. In finite-difference multigrid methods, point relaxation performs

poorly in such _anisotropic cases, and the cure is to use alternating direction line relaxation. Thus,

it is reasonable to try an analogous approach for the Chebyshev discretization.

Formulation

To formulate the line relaxation method, we express the discrete problem (3) in the matrix form

('t/+ V)U" = F, (15)

where 7t and V correspond to the horizontal part (-82/0x 2) ancl vertical part (-02/0y2) of the

Laplacian operator, respectively. Starting from an approximation V °ld to the soIution U, one sweep

of (alternating direction) line relaxation based on (15) consists of the following two parts:

, Sweep along the x-direction. On each grid line parallel to x-axis, use the values of V °ld except

those on the current line, and solve for values on the current line by solving (15). This can be
expressed in the matrix form as

(_rg q- )2d)V mid = F- _o v°Id, (16)

(7 : .

°

where _;d and ])o denote the diagonal and off-diagonal parts of the matrix 1;, respectively. Note

that the entries of ]2d are known (ref. 1) and )24 is a constant on each grid line parallel to the x-

axis: Thus, the system (16) can be decoupied into (N - 1) one-dimensional discrete problems,

each of which is a Chebyshev collocation approximation to a Helmholtz equation on an interior

grid line parallel to x-axis; the x-directional sweep consists of solving these equations.

Sweep along the y-direction. The y-direction sweep is basically the same as the x-direction

sweep except that we now work on grid lines that are parallel to y-axis and use values of V mid

instead of V °ld. The equation we need to solve is

(']'_d -t- )d)V new -- P -- "]'_oVmid, (17)

where qf_d and 7"/o are the diagonal and off-diagonal parts of 7/. As in the x-direction sweep, the

two-dimensional problem (17) is solved by solving (N- 1) one-dimensional Helmholtz equations.

It turns out that as it stands, the line relaxation (16)-(17) is not a good multigrid smoother;
mid mid old newhowever, this can be fixed as follows. Let C " = V " - V and C = V new - V niid denote the

corrections for V °ld and V _id, and R °ld = _' - AV °ld and R mid = _P - AV mid denote the residuals

of V °ld and V told, respectively. Rewriting equations (16) and (17) as correction equations and
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introducing a relaxation parameterw (to be determined by analysis to accelerate the convergence),

we obtain

(_ + ])d)C mid = wR°ld, (_d + V) Chew = wRmid (18)

We refer to (18) as the collocation version of the line relaxation method.

It is not practical to implement the collocation version because there are no fast solvers available

for the collocation approximations, even for one-dimensional problems. However, in the multigrid

context, a relaxation scheme functions as a smoother rather than a solver: instead of solving

each problem exactly, we only need to smooth out the error, i.e., reduce high modes in the error.

Therefore, it is reasonable to replace the one-dimensional problems in (18) by approximate versions

which can be solved efficiently. We consider two alternatives as follows.

In the first, we replace the collocation discretizations of the one-dimensional Helmholtz

equations in (18) by tau discretizations. Tau approximations have the same exponential

convergence as collocation method, but can be solved directly in O(N log N) operations. This leads

to the tau version of the line relaxation method, and the total work of one x or y-direction sweep is

O(N 2 log N). As we will see below, this tan version turns out to be an efficient multigrid smoother.

In the second, we replace the collocation discretizations of the one-dimensional Helmholtz

equations in (18) by finite-difference discretizations. This leads to the finite-difference version of

the line relaxation method, which has two obvious advantages over the tau version. First, it is

faster because it eliminates the transforms required in tan version, thus reducing the operation

count for solving each one-dimensional problem from O(N log N) to O(N). Second, it can be

extended to solve more generalized problems, e.g., problems with variable coefficients. As we will

see below, this finite-difference version also turns out to be an efficient multigrid smoother, even in

the case of variable coefficients.

Analysis

As in the case of the pointwise preconditioned Richardson relaxation, we can analyze the

performance of the line relaxation methods described above by computing the eigenvalues of the

corresponding interation matrices. Because the tau version cannot be expressed in matrix form

like (18), we will only do the analysis for the collocation and finite-difference versions. Note that

the tau and collocation versions are nearly the same, so the analysis for collocation version should

give a good prediction for the performance of the tau version. In this section, we will give details of

the analysis for finite-difference version and only list results for collocation version.

Smoothing Analysis

For the finite-difference version of the line relaxation iteration, the error evolution is described

by

E told +----[I--w(7-I fd + ])d)-I (7-/+ V)]E °ld, (19)

E new /---[I-o3("_ d -t- vfd)-l(qt'_ Jr- ]))]E mid. (20)
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where7/fd and Vfd arethe finite-differenceanaloguesof the collocationdiscretizationmatrices7-/
and V, respectively.Therefore,the error evolution matrix for onerelaxation is

S = [I- w(7-ld + "12fd)-l(7-I + Y)][I- w(7-l ld + Yd)-l(7-I + "12)]. (21)

The matrices $7/ = (7-/fd + 13d)-](7/+ V) and SV = (7-ld + ]}/d)-l(_t/ _[_ V) have the same

eigenvalues (since x and y can be interchanged in the Laplacian operator), so we can focus on

just the x-direction sweep (19). The eigenvalues of Sn are all positive real numbers, so we can

use formulas (14) to obtain approximate values of w and p (squaring p to represent the effect of

both the x and y sweeps). These values are listed in Table II for N < 32, along with the optimal

relaxation parameter w and corresponding multigrid smoothing factor p = p(GS) computed

directly. These results suggest that for large values of truncation number N, Wopt ,_ 0.6 and

p _< 0.5, independent of the grid size. Corresponding results for the collocation version are listed

in Table III.

Multigrid Analysis

For a multigrid V(nl, n2)-cycle, if we use zeros as initial guesses on all coarse grids (which is

a natural choice because the coarse-grid solution is a correction to the solution on the next finer

grid), then we can write out the error evolution matrix explicitly as

M = Sn2 [I - PG R(7-l + ]])]S ill . (22)

This represents a procedure of nl pre-relaxations (S nl) followed by a coarse-grid-correction

(I - P G R (_ + ]2)) and then n2 post-relaxations (sn2). The matrix S is the error evolution
matrix of one relaxation on the finest grid defined in (21). The central part I - PGR(7-l + V)

represents the coarse-grid-correction, where R represents the fine-to-coarse grid transfer (we use

injection) and P represents the coarse-to-fine grid transfer (we use Chebyshev interpolation). The
matrix G is defined on the next coarser grid as follows: on the coarsest grid, G = (7-/+ ]2) -1 (which

means the coarsest grid problem is solved exactly); otherwise,

G = [I - M] * (7-/+ ]2) -1, (23)

which represents a multigrid solution procedure on that grid. Note that (23) is actually a recursive

definition, since the matrix M in (23) includes another matrix G on the next coarser grid.

Tables II and III also list computed values of smoothing factor per sweep #s = (P(M)) 1/(nx+n2)

for the case w -- 0.6, nl = 2, and n2 = 1. These results suggest that the smoothing factor of the

line relaxation method is less than 0.5, independent of the grid size. Note that while we could also

use Chebyshev restriction instead of injection for the fine-to-coarse grid transfer R, our numerical

experience shows very little difference between these two choices.
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Table II. Analysis of the Finite-Difference Version

Eigenvalues of $7_ By (14) By computation

N Am_ _qua 03 p O2op t p ]A s

4 1.995 1.000 0.669 0.110 0.58 0.110 0.181

8 2.513 1.000 0.569 0.186 0.60 0.168 0.293

16 2.780 0.995 0.530 0.224 0.60 0.271 0.364

32 2.898 0.815 0.539 0.315 0.60 0.366 0.421

Table III. Analysis of the Collocation Version

Eigenvalues of $7_ By (14) By computation

N Amax /_qua 02 p _Mopt /_ Ps

4 1.651 1.000 0.754 0.060 0.68 0.120 0.302

8 2.322 0.922 0.616 0.186 0.60 0.216 0.328

16 2.701 0.810 0.570 0.290 0.58 0.326 0.380

32 2.869 0.700 0.560 0.370 0.60 0.410 0.428

Computational Results

We have implemented the tau and finite-difference versions of the line relaxation scheme

described above in a Chebyshev collocation multigrid solver for the two-dimensional Helmholtz

problem

Au(x,y)- Au(x,y)= f(x,y), Ixl,ly[< 1,
u(x, y) = y), = 1, [Yl = 1,

with various choices of f, g, and A. For both versions, the observed convergence factor per sweep is

less than 0.5 for all cases tested, in agreement with the analysis above. The finite-difference version

turns out to have slightly better convergence factors than the tau version, but the difference is
minor.
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Comparisonswith Other Methods

In this sectionwecomparethe line relaxation spectral multigrid method developed above to two

other methods for solving the two-dimensional prototype problem (2). The first is a conventional

finite-difference multigrid method; the second is a matrix diagonalization technique. We do not

compare with the method of Zang et. al. (ref. 3) since the details presented in that paper were not

enough to allow programing the method. All computations are done on a SUN SPARCstation2

using double precision; the machine round-off error is about 2.22 x 10 -16.

Conventional Finite-Difference Multigrid Method

The finite-difference discretization is the usual second-order five-point scheme on a uniform

grid. The finite-difference multigrid method uses Gauss-Seidel (Red-Black) iteration as a relaxation

scheme, the fine-to-coarse grid transfer is half-injection, the coarse-to-fine grid transfer is bilinear

interpolation, and the multigrid V-cycle algorithm is used.

According to computations, the average execution time of one V(2, 1)-cycle of the finite-

difference multigrid method is approximately (0.56 x 10 -4) N 2 seconds, and (0.21 x 10 -3) N 2 log 2 N

seconds for line relaxation spectral multigrid method. Therefore, for the same grid sizes, one

V(2, 1)-cycle of the finite-difference multigrid method is approximately 3.75 log 2 N times faster

than the line relaxation spectral multigrid method.

However, because spectral methods have exponential convergence and finite-difference

methods oniy have polynomial convergence, when high accuracy is required, finite-difference

multigrid methods must use much bigger grid sizes than spectral methods. The result is that

the line relaxation spectral multigrid method is faster than finite-difference when high accuracy

is required. As a specific example, consider the prototype problem (2) with true solution

u(x, y) - e2_+y cos(_r(x + 4y + 0.25)). The relation between accuracy and execution time required

to achieve that accuracy is plotted in Figure 1 for both methods. We can see that when low

accuracy is required, the finite-difference multigrid method is much faster than the line relaxation

spectral multigrid method, but the situation is reversed when high accuracy is required. The

crossover point for this problem is at an accuracy of about one percent error. The same conclusion

would hold for finite-difference methods of higher (fixed) orders, although the crossover point

would shift. Variable-order finite-difference methods could be expected to perform more like the

spectral method, at a cost of considerable complexity.

Matrix Diagonalization Technique

The matrix diagonalization technique is introduced in (ref. 5) as a direct solver for the

Chebyshev spectral approximation to the Poisson equation with Dirichlet boundary conditions.

This technique requires a preprocessing step, which involves computing the eigenvalues and

eigenvectors of a one-dimensional operator matrix (O(N 3) operations), and a solution step, which
involves one-dimensional matrix multiplications (O(N 3) operations).
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Figure 1. Execution time: LR-SMG vs FD-MG

To compare execution times, we note that the line relaxation spectral multigrid method

usually takes approximately 10 V-cycles to solve to the level of machine precision. Thus, Figure 2

compares the execution time of 10 V-cycles of the line relaxation spectral multigrid method with

the execution time of solving the same problem directly by the matrix diagonalization method

(including the preprocessing step). These results show that the matrix diagonalization method is
quite fast for small grid sizes, but as the grid size grows, it becomes slower than the line relaxation

spectral multigrid method. This is because the line relaxation spectral multigrid method is an

O(N 2 log N) method, while the matrix diagonalization method requires O(N 3) operations (even

without the preprocessing step).

The matrix diagonalization technique is very efficient for problems with constant coefficients,

especially when repeated solutions are required. However, this technique can only handle problems
with constant coefficients. As shown below, the line relaxation spectral multigrid method is able to

solve problems with non-constant coefficients.
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Extension to Problems With Variable Coefficients

As a test problem with variable coefficients we consider

0 (a 0 :): :0:(b(x,y)__yU(X,y)) -:_ :

u(_, y) = g(_,y),

where the coefficient functions and the true solution are

a(x,y)

JxJ, Jy[ < 1,

JxJ = 1, JyJ-- 1,

(24)

(25)

71" 7r

u(x,y) = sin(a_rx + _) sin(a_ry + _). (26)

The parameter e measures how far the coefficients are away from the constant 1,/3 measures the

oscillation of the coefficients, and a measures the oscillation of the solution.
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Implementation of the Line Relaxation Spectral Multigrid Method

The implementation of the finite-difference version of the line rela_'ation method is basically the

same as for the constant coefficient case except for the following:

1. On each grid line, the one-dimensional problem is not a Helmholtz equation anymore. For

example, on a gird line y = Yk which is parallel to x-axis, we now solve a problem like

C9 (a(x,_&) _---_v(x,_lk)) -- Vd(X,_&)v(x,_lk) = h(x,_lk)Ox
(27)

by using a second-order finite-difference approximation on the Chebyshev grid.

2. To compute values of ]?d(_2j, _]k), note that the interior equation in (24) can be rewritten as

02U Oa Ou 02u Ob Ou
- f, Ixl,lyl< 1 (28)

_ a ox 2 Ox Ox oy o Oy Oy

and the Chebyshev collocation approximation to (28) can be written as

{-Agx - Axg } (; - {- 9yy -  yVy} U = F, (29)

where ,4 and B are diagonal matrices containing the values of the coefficients a(_j, 9k) and

b(_j, 9k), A_ and B_ are diagonal matrices containing the values of the derivatives _-_a(_j, 9k)

and _yb(Ycj,gk) (which can be computed from values a(Y:j,gk) and b(_j,gk)), and :Dz, T_z_,

:Dy, and :Dyy are Chebyshev differentiation matrices. Therefore, 7/ = -A:D_x - .Ax:D_ and

V -_ --]3:l)yy -- By_)y; generating the diagonal entries of 7/and )2 is straightforward.

. On coarse grids, we need to use so-called "filtered" coefficients a(x, y) and b(x, y) to formulate

the coarse grid problems; i.e., the coefficients a(x, y) and b(x, y) are evaluated on the finest grid

and then transferred to the coarser grids by Chebyshev restriction (ref. 3).

Computational Results

We have run the line relaxation spectral multigrid method for different values of parameters ¢, a

and _. For a = 1.0 and N, = Ny = 32, the smoothing factor is graphed in Figure 3 as a function of
¢ and a. Here we have chosen to measure the smoothing by the "smoothing factor per work unit"

defined by #_, = (r2/rl) r°/r, where rl and r2 are residual norms before and after one multigrid

V-cycle, T is the execution time of one cycle and TO is the execution time of one relaxation. These

results show that for a wide range of ¢ and fl, the method converges relatively quickly.

In (ref. 3) the same test problem (24) was solved using the Richardson relaxation (.5) using

two-dimensional finite-difference preconditioning; incomplete LU decomposition was used to

approximately solve the finite difference approximation on the Chebyshev grid. With only limited

details of the formulation and results of this method, it is difficult to make a complete comparison

to the line relaxation method considered here. However, it appears that the line relaxation method

gives convergence factors at least as small as those in (ref. 3); moreover, it is simpler.
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CONCLUSIONS

10.0

The pointwise preconditioning is simple and fast to apply. It is very efficient for one-dimensional

problems. Unfortunately, it does not give fast multigrid convergence for two-dimensional problems.

The line relaxation method provides a new approach to accelerate the multigrid Chebyshev

spectral method for solving two-dimensional elliptic problems, it is efficient (yielding multigrid

smoothing factors no larger than 0.5 per sweep) and inexpensive (requiring O(N 2 log N) operations

per sweep). : _::: : _........ :: : ; :

When high accuracy is required, the spectral multigrid method using line relaxation is orders

of magnitude faster than a conventional finite-difference multigrid method, due primarily to the

exponential Convergence of the spectraldiscretizati0n, compared to other methods for solving

the discrete spectral equations, the line relaxation method also has advantages: it is comparable

in efficiency to matrix diagonalization and finite-difference preconditioned Richardson relaxation,

but can solve problems with variable coefficients which the former cannot, and is simpler than the
latter.
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